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ABSTRACT
Exploratory learning environments, such as virtual labs, sup-
port divergent learning pathways. However, due to their com-
plexity, building computational models of learning is challeng-
ing as it is difficult to identify features that (i) are informative
with respect to common learning strategies, (ii) abstract simi-
lar actions beyond surface differences, and (iii) differentiate
groups of learners. In this paper, we present a visualization
tool that addresses these challenges by facilitating a novel
analytic approach to aid in the knowledge engineering process,
focusing on five main capabilities: data-driven hypotheses
raising, visualizing behavior over time, easily grouping related
actions, contrasting learners’ behaviors on these actions, and
comparing the behaviors of groups of learners. We apply this
analytic approach to better understand how students work with
a popular interactive physics virtual lab. By splitting learners
by learning gains, we found that productive learners performed
more active testing and adapted more quickly to the task at
hand by focusing on more relevant testing instruments. Impli-
cations for online virtual labs and a broader class of complex
learning environments are discussed throughout.
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INTRODUCTION
Online learning environments are increasingly complex. One
aspect of this complexity is the diversity of instructional ac-
tivities and their affordances. In addition, many environments
move away from prescribed linear trajectories to support (and
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Figure 1. The PhET CCK interface, an unstructured learning environ-
ment. A complete circuit has been built in the workspace with a battery,
resistor, and some wires. Also seen are two of the testing instruments:
voltmeter (measuring voltage) and ammeter (measuring current).

encourage) user-driven exploration. Another aspect is the vari-
ety of learners, their goals, and engagement patterns. Overall,
this complexity and diversity add a significant challenge to
the interpretation of log data from learning trajectories. In
short, how can we interpret learners’ interactions in online
learning environments? More specifically, how can we iden-
tify strategies, infer intentions, assess learning, or evaluate
quality of engagement? For example, Figure 1 shows a virtual
lab in which learners construct and test electric circuits with
the goal of learning about DC circuits. This virtual lab has
124 different actions available to learners, and is part of a
family of virtual labs that are used over 50 million times a year
[1]. How can one use log data to evaluate student’s attitudes
and knowledge when the design space is unlimited and the
solution space is underdefined? Furthermore, how can this be
applicable to learners with diverse backgrounds and goals?

To interpret learner behaviors, researchers create models of
learning in the environment. Common approaches for knowl-
edge engineering rely on expert analysis and learning theories.
However, all too often, this process is not well-informed by
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empirical data. Machine learning approaches, on the other
hand, make extensive use of empirical data, yet often ignore
expert knowledge and learning theories. In this paper we seek
to combine the benefits of theory-driven (top down) knowledge
engineering and data-driven (bottom up) knowledge discovery
to make sense of data from complex systems. We propose a
workflow, supported by a system, which allows researchers
to hypothesize patterns based on data and quickly test these
hypotheses. By doing so, we infuse the knowledge discovery
process with insights based on available data.

A main goal for this work is to strengthen the bridge between
data sciences, learning sciences, and instructional design. The
tool, Tempr, helps its users raise hypotheses about what ac-
tions are related and how. It then allows them to quickly test
their hypotheses by visualizing the relationship between en-
gagement behaviors and other student-level factors (such as
knowledge level). Tempr facilitates an analytic process that is
based on the following approaches: iterative hypothesis rais-
ing and testing regarding grouping of related actions, informed
by data; temporal analysis of log data; and visual comparisons
between groups of learners.

We begin by describing the challenge of knowledge engineer-
ing in complex environments. We then review related litera-
ture from the education and visualization communities. We
highlight key capabilities of Tempr that address many of the
identified challenges, and demonstrate its utility by presenting
the results of using Tempr to analyze authentic data from the
virtual lab shown in Figure 1. Last, we describe how Tempr
could assist with knowledge engineering in other complex
learning environments, such as Massive Open Online Courses
(MOOCs).

BACKGROUND
A first step towards modeling learning in new environments
is to better understand it. That is, researchers should be able
to label patterns in the data and assign meaning to sequences
of actions. Overall, there are two common methodologies for
contextualizing our understanding of what learning looks like
in a target environment. While these typically apply to model
the domain knowledge, they can also be applied to modeling
the learning process [19]. Knowledge engineering refers to a
theory-driven top-down process, often based on expert analy-
sis [2]. For example, in a problem solving environment, fast
repeat failed attempts can be labeled as guessing. This label
is based on our understanding of how students learn, not on
empirical data. Similarly, knowledge engineering can be used
successfully to interpret other aspects of the learning process,
such as help seeking [2, 18]. However, knowledge engineering
becomes harder as the design space in the environment grows.
For example, in a virtual lab such as the one shown in Figure
1, it is nearly impossible to define what actions constitute dif-
ferent testing strategies, given the multitude of testing actions.
Similarly, in a MOOC setting, interpreting navigation events
is challenging given their diversity. A common alternative
to knowledge engineering is knowledge discovery, in which
machine learning and statistical approaches are used to extract
patterns from the data. For example, a knowledge-discovery
approach to identify guessing in a problem-solving environ-

ment revealed two different types of guessing [4]. Knowledge
discovery has been found to be very successful in certain
domains [10], including in complex environments [3, 8]. How-
ever, while knowledge discovery can often be applied to pre-
dict overall learning from an environment, it has several major
shortcoming. First, it is often hard to interpret the detected
trends, and thus, while accurate, does not inform theory [2,
19]. Second, it is effective for skills that are easy to label, but
less for divergent strategies [3, 21]. Last, the detected models
may be overly specific to context and populations [8].

Several existing visualization systems address similar chal-
lenges to the ones identified above. A few systems support
temporal analysis of log data and visual comparisons between
groups [12, 14, 16, 24]. A number of these systems allow for
iterative hypothesis raising and testing regarding grouping of
related actions. One such system is CoCo [14], which allows
users to test their hypotheses about which events, or sequences
of events, describe different clusters of learners. However,
CoCo’s design works best when investigating log data with
a small number of possible events. Thus, applying the tool
to data from environments with a large variety of actions is
challenging. Similarly, MatrixWave [24] allows for the com-
parison of log events between two groups. Specifically, it
allows for the exploration of how one webpage is navigated in
two different conditions. This allows researchers to form hy-
potheses regarding the differences between the two conditions.
However, again, this tool works best when researchers have
a small set of events to study, it does not allow the researcher
to combine multiple events together to explore how different
types of events relate to each other.

Other visualization systems have made an attempt at explicitly
highlighting informative features from the data. For exam-
ple, INFUSE [11] visualizes the result of feature selection,
showing the user the most predictive features. While this is
an important step, the system does not support the next steps,
in which analysis is preformed on grouped events. FeatureIn-
sights [6] helps users to engineer features from their text data,
highlighting the features that distinguish two groups. How-
ever, this system also does not allow users to group multiple
features. Others allow for detection and automated group-
ing of similar features [9, 23], an approach more similar to
knowledge discovery. Yet, we advocate for a process in which
the researcher can form their own groups of features as is
desired in feature engineering. Other researchers attempted to
group log event features for their visualization of clickstream
data in semantic ways, including tf-idf and LDA, but resorted
to relying on experts to perform the grouping manually, as
none of the automated groupings produced acceptable results
[13]. Thus, while addressing the challenge of making meaning
of complex data is shared in many existing environments, it
seems that these often lack the ability for the user to group dif-
ferent types of actions, evaluate that grouping over time, and
analyze how the newly-formed groups are used by different
clusters of learners. Tempr and the analytic workflow that it
facilitates address that need.
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VISUALIZATION TOOL
We have developed Tempr, a visual analytic approach, to assist
with knowledge engineering. The main goal of this tool is
to inform the top-down knowledge engineering process with
patterns that emerge bottom up. Tempr does so iteratively:
researchers investigate different types of behaviors and use the
tool to identify patterns in the data and informative groupings
of actions. Assigning meaning to these patterns can facilitate
additional hypothesis testing and grouping in Tempr. The
outputs of this exploratory process are intended to inform
additional analysis, likely more statistical in nature.

Capabilities
The tool is built to support five main capabilities, presented
below.

Surfacing big picture patterns
It is important to give researchers an overview of the data
upfront, so that they may better discover and interpret emerg-
ing patterns. A global view of the data allows researchers to
assess the scope and scale of the data [22], in terms of, for
example, the number of available actions in a virtual lab or
other learning environment. Acknowledging the size and scale
of a dataset will help put discovered patterns in perspective.
Finally, an overview of the data allows researchers to prioritize
the aspects or features of the data they wish to explore.

Visualizing learning over time
While researchers often look at data by learner, too often data
across entire sessions (or even entire courses) are combined,
ignoring trends over time. However, learning in complex
environments has a temporal nature [7]. For example, while
an early pause in a student’s actions may be a sign of planning,
a later pause is more likely a sign of reflection. Analyzing a
student’s overall pausing behavior ignores possible strategic
use of pauses over time. Thus, Tempr visualizes how learning
unfolds over the duration of the activity.

Supporting exploratory grouping of related actions
One of the main challenges in exploratory environments, as
described above, is the large diversity of actions. These could
be merged into fewer types of actions, skills, or strategies.
However, identifying which actions should be merged together
in order to abstract learner behaviors is not a trivial task. As
an example, in the case of a MOOC, correct problem-solving
attempts may show similar trends to incorrect ones, and may
be grouped to create an "attempt" category. However, perhaps
these actions are qualitatively different, as they hint at different
knowledge levels and entail different subsequent actions. Thus,
quick evaluation of grouping of actions is of interest. Similarly,
in an interactive virtual lab such as the one shown in Figure 1,
grouping and then visualizing all "building" types of actions
may be more meaningful than individually visualizing actions
that are associated with building a circuit, such as adding a
wire, connecting a light bulb, or connecting a resistor. Tempr
supports quick evaluation of potential grouping of actions to
facilitate the evaluation of learning strategies.

Contrasting of actions
While some actions need to be grouped, other types of actions
need to be contrasted. For example, in a MOOC context,

Figure 2. Input to Tempr. All users for each group are placed in one
".txt" file. Each action they took while working with the environment is
listed one after the other, with users separated by "======".

one may wish to compare how learners engage differently
with graded versus ungraded problems, quizzes in different
course modules, lecture videos in different course modules,
etc. In a virtual lab, one may wish to understand what the
relationship is between building circuits and testing them. The
tool supports visual contrasts by simultaneously displaying
the distribution of relevant actions over time, and, in so doing,
enables researchers to evaluate these actions as part of effective
or ineffective learning strategies.

Comparing groups of learners
In many exploratory environments there is no one correct way
to engage with the course. For example, how should learners
make use of self-tests in MOOCs? How should they use test-
ing instruments in a virtual lab? Tempr has a built-in ability to
show how different groups of learners interact with the envi-
ronment differently. This could be used to compare learners
with different outcome attributes (such as comparing success-
ful learners to less successful ones), or incoming attributes
(such as comparing the behavior of learners with different
prior knowledge, attitudes, or backgrounds).

Tempr’s architecture
The main Tempr interface can be seen in Figure 4. It
was built using JavaScript[17], and, specifically, D3.js
[5] for the graphs. Tempr is available for download
on Github under the GNU license: https://github.com/

fratamico/Tempr---A-visual-knowledge-engineering-tool.

Data Input
Tempr was designed with flexibility and generality in mind.
The requirements in terms of data input reflect this design
by enabling the use of log data from diverse sources with
varying analysis goals. Tempr takes input in the form of two
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".txt" files, one for each group of learners. Each file is com-
prised of the sequence of log events for each user in that
group. An example of the input is shown in Figure 2. In terms
of format, users’ action sequences are separated by equals
signs and each line is a logged event for that user. The re-
searcher can choose which and how many arguments within
a logged event they want to include, and should separate the
selected arguments with a period. For example, in the virtual
lab shown above, we chose to include the following infor-
mation in the event: actor (user or model), component (the
component being operated on), and action (the action that
was done). For MOOCs, this data can include module ID,
component type, component ID, and event type, for exam-
ple: Week1.video.Introduction_Video.PlayVideo. There are
no requirements of event names. However, the terms in each
line of the logged events can later be used for filtering and
should include all meaningful contextual information avail-
able in the logged event. Notably, the input data files contain
sequences of events and do not include duration information.
While this compromises the ability to analyze actions by dura-
tion, it makes data entry to Tempr more straightforward and
permissible to log data without time stamps.

As mentioned above, Tempr takes two files, one for each group
of learners. Learners can be grouped in different ways. In
the example below we split learners into two groups based
on learning gains from an activity in a virtual lab. However,
learners could be divided in other ways too, for example, based
on incoming attributes (knowledge, attitudes) or whether they
completed the MOOC or not. Any qualitative or quantitative
factor can be used to split students into groups and these
groups need not be of the same size.

An overview of Tempr
Tempr has three main panels:

1. The Heatmap Panel. This panel supports hypothesis raising.
It provides an overview of all actions in the tool over time
and helps to identify which actions show similar patterns
and could be further investigated.

2. The Merging Panel. This panel supports exploration of
different groupings of actions. This is key for knowledge
engineering, as it helps to see what combined actions may
highlight the differences in how groups of students learn.

3. The Visualization Panel. This panel enables the comparison
of an action or merged sets of actions by groups of students
over time.

The next sections present the utility of these panels by demon-
strating how users can quickly raise hypotheses, identify and
design the comparisons they wish to make, discover differ-
ences in learning behaviors of student groups, and test their
hypotheses.

Heatmap Panel
The heatmap panel offers users the big picture of their data. It
visualizes differences in the frequency of action use at certain
time intervals. This helps users raise hypotheses about learning
in their environment. For example, users may be curious about

Figure 3. The heatmap panel of the Tempr interface. Blue hues indicate
that high learners (HL) performed the action more, and brown hues in-
dicate that low learners (LL) performed the action more. The darkness
of the color indicates how much more that group performed the action.

which events are similar between different groups of learners.
Similarly, the heatmap allows the comparisons of actions based
on the use of the action by student groups. Finally, potential
groupings of actions can be determined by identifying actions
sharing similar use patterns over time.

The heatmap panel can be seen in Figure 3. Along the left are
the raw log events. Raw log events are simply each event that
is available in the logs of raw student action data. For virtual
lab log data, one of these such events could be the action of
manipulating a testing instrument. For MOOC data, this could
be a play of video 1 in lesson 1. Across the top shows the
percent of actions completed, normalized for each student. For
example, the left column, labeled "0%-20%", summarizes the
first 20% of actions that students took. The colors indicate
which group of students performed the action more, and the
darkness of the color indicates the how much more of it they
performed.

This panel gives an overview of how groups of learners were
performing over the course of interaction. We can quickly ig-
nore the events where the heatmap shows white cells, as these
are times when that event was used with a similar frequency
by the two groups of learners. This allows users to focus on
the more divergent events and form hypothesis about which
actions should be combined to distinguish groups of learners
while also developing potentially informative features.

Merging Panel
The merging panel allows users to group actions that they
hypothesize are related. As mentioned in the introduction, in
order to find patterns in data, a researcher may have to try
looking at the data in a variety of different ways. To determine
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Figure 4. Tempr interface. The merging panel is on the left, and the visualization panel is on the right. The top graph shows the use of one action
over time, specifically the use of the action "user.resistor.addComponent". The bottom graph shows the use of a group of merged actions over time,
specifically the use of all actions that result in a circuit component being added, such as a light bulb, resistor, battery, wire, etc.

the best features to engineer, one may first want to abstract
to a bigger picture (combining many raw log events), then
dive in and explore different pieces that make up the bigger
picture, then abstract out to a different bigger picture, etc. This
iterative process is at the core of the Tempr workflow.

There are two portions of the merging panel which can both
be seen on the left side of Figure 4: the raw log events por-
tion and the merged events portion. There could be hundreds
of different types of raw log events, as is often common in
exploratory learning environments. This drives the need to
combine raw events to understand how sets of actions are ap-
plied by different groups of learners throughout the interaction.
Merged events are comprised of multiple raw log events. To
merge raw log events together with Tempr, a researcher can
first select the raw log events in the top of the left panel by
checking the box next to them, then merge them by clicking on
the "Merge Events" button above. Subsequently, the merged
action will appear under the "Merged Events" list and all the
raw log events that comprise it will be listed below it. This
feature allows for an iterative procedure for hypothesis testing.
Users can quickly group actions to test hypotheses about what
impacts different groups of combined raw log actions will
have on learner behavior, and revise accordingly, combining
bottom-up and top-down analytic processes: expert knowledge
guides the data mining, by choosing which combinations to
test; patterns in the data then guide the expert knowledge, by
revealing which show consistent and coherent terms.

Visualization Panel
The visualization supports comparing different groups of learn-
ers on different sets of actions over time. Both merged events
and raw log events (top graph, right side) can be plotted, as
shown in the right hand side of Figure 4. The bolded title
gives the name of what is graphed, and the subtitle below,
if any, tells what raw events were combined to make up the
graph. The bottom graph in Figure 4 is the visualization of the
"Basic Building - Adding Components" set. To comprise this
feature, 6 raw log events, all related to adding components to
the learning environment, were merged. In this way, Tempr
allows a researcher to gain a visual understanding of how dif-
ferent combinations of raw events reveal learning patterns for
different groups of students.

Each chart is an overlay of two plots, corresponding to the
two groups of learners. The y-axis is frequency of that action,
that is, the percent of this action out of all actions per student
during that time slice, averaged across students. For example,
if a student performed 20 actions while interacting with the
environment, and 2 of them were testing actions, then the
frequency for that student would be 0.1. The presented value
is the average frequency across students in that group. The
x-axis across the bottom shows percent of actions completed,
normalized for each student. In this way, with Tempr, users
can compare student performance over the learning process
and see how student groups perform differently over the course
of interacting with the learning environment. The visualiza-
tion over task progression is an essential piece as it helps us
understand how learning unfolds over time. Furthermore, dif-
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ferences in frequency of actions taken can often be washed
out if only looking over the overall interaction patterns over
the entire activity. Visualizing task progression allows users to
see things such as changes in frequency for each student group
over time, differences between the two groups of learners, and
frequency of sets of actions in specific time slices relative
to frequency of other actions. For example, in Figure 4, we
can see from the bottom graph that adding components to a
circuit in the PhET virtual lab is done more frequently at the
beginning of interaction than it is at any other point throughout
interaction.

The graph itself shows distribution within groups. The dashed
lines are the median frequency of that action for users in each
group, and the shaded regions shade the region between the
25th and 75th percentile for each group (one may think about
it as box-and-whisker plots for each group at each time slot,
without the whiskers). This representation shows both central
tendency and distribution, and is less sensitive to outliers. The
two groups can be quickly identified based on the colors. In
this way, users can quickly compare the frequency with which
most users in each group are performing each action. There is
also a green area in the middle where the two groups of learn-
ers are overlapping. This is common, and it can be common
for the green area to be large; for the most part, but depending
how students were grouped, many students act fairly similarly
throughout interacting with the environment. That’s one of
the challenges in finding the right features that differentiate
between groups of learners. However, with Tempr, since the
medians are also graphed and since the area between the quar-
tiles can extend past each other (eg, the 75th percentile for one
group may be higher than it is for the other group, as it is in
the first 20% of interaction in the top graph in Figure 4), we
can still easily understand these subtle differences in how the
groups of students are learning. It is important to emphasize
that data sets with large and statistically significant effect sizes
still have much overlap in their distributions. Overall, the
visualization panel of Tempr allows for easy comparison for
how different groups of students are performing.

RESULTS
In this section we discuss the application of Tempr to facilitate
analysis on students working through the PhET CCK learn-
ing environment. We first describe the PhET CCK and its
dataset. We then demonstrate how Tempr is able to abstract
and evaluate learner strategies from user log data.

CCK Simulation
PhET is a family of over a hundred interactive virtual labs in
STEM topics, used by students at the kindergarten through
university level [1]. It is the most popular family of virtual
labs, having over 50 million runs a year. These virtual labs
offer learners opportunities to engage in authentic inquiry, and
teachers create a variety of activities around these. These are
often shared in the teaching community.

The PhET Circuit Construction Kit (CCK) is the most com-
monly used virtual lab in the PhET family. Students in CCK
construct and test DC electric circuits by using a variety of

components that include batteries, wires, light bulbs, resis-
tors, and measurement instruments such as ammeters and volt-
meters. Overall, there are 124 different types of actions that
students can perform at each moment. These actions include
adding, moving, joining, splitting, and removing components,
as well as changing the attributes of components (such as re-
sistance). Additional actions relate to the interface (such as
changing views or zooming in and out), or the virtual lab itself
(such as pausing or resetting the virtual lab). The outcomes
of these actions depend on the state of the virtual lab. These
outcomes manifest themselves in the logs in the form of model
actions. For example, the user action of changing the resis-
tance of a component will, if that component is connected to
a live circuit, trigger a model action of changing the current
of the circuit. A second model action in this scenario may be
a change to the ammeter reading, if one is connected to the
circuit.

User Study
One hundred students from first-year physics courses at the
University of British Columbia volunteered for a study which
took place outside their normal classroom hours [20]. The
study included an activity on the topic of DC circuits, which
took 30 minutes. The activity asked students to explain the ef-
fect of connecting multiple resistors on the voltage and current
of a circuit. Students received this general learning goal and a
general recommendation to explore several resistors within the
same circuit loop, on different circuit loops, and a combination
of the two. Pre- and post- tests were given to each student so
that we could measure learning gains across the activity.

Processing the Log Data
To prepare the data, we extracted the sequential list of actions
logged as each student interacted with the virtual lab. As
mentioned above, this was a combination of student-originated
actions and the resulting model actions. Classifying learners to
two groups was done by calculating their learning gains [15].
We then applied a tertiary split, comparing the high learning
gain group (HL) to the students with low learning gains (LL),
ignoring the middle third.

CCK Simulation Analysis with Tempr
Overall, our analysis was driven by the following question:
How do students learn by testing? Without Tempr, one may
settle for merging all testing events, looking for testing more
vs. less frequently during the entire activity. However, as
shown in Figure 5, this does not reveal interesting results: HL
test slightly more than LL at the beginning and end of inter-
action, but during the rest of interaction, it appears they test
fairly similarly. Instead, we want to better understand how
testing instruments are used by learners of both groups with
the goal of identifying effective and ineffective testing strate-
gies. Specifically, we looked to better understand: (i) How
do learners use different testing instruments? For example,
are they all treated equally, or do different groups gravitate
to different instruments? (ii) How do learners use the instru-
ments? Do they leave them connected to passively test other
changes in the circuit, or do they test actively by moving them
around? Do we observe the same patterns for measuring volt-
age and measuring current? Answering these questions can
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Figure 5. Merging all testing results does not reveal interesting results.
It appears as though HL and LL test similarly for the majority of inter-
action.

reveal what critical testing events look like. In other words,
what testing events correspond with productive learning, and
how are they performed?

The heatmap visualization provides an overview of the dif-
ferences between the two learner groups. Figure 3 shows the
heatmap sorted by the last column, to emphasize differences
between common actions of HL vs. LL during the last 20% of
the interaction.

In regards to the types of testing, since the heatmap is sorted,
we see that the top seven events are ones that HL perform
more frequently than LL. 5 of those 7 relate to testing with
the ammeter. Conversely, 7 of the 16 events that LL perform
more frequently relate to voltmeter testing. Already, we see
that there might be a difference in which testing instruments
each group of students prefers.

In regards to the way testing was done, HL are both performing
a larger amount of moving the ammeter device and measuring
current changes with it. LL are the opposite: performing a
larger amount of moving the voltmeter device and measuring
voltage changes with it. Thus, the heatmap reveals different
preferences with regard to the instrument, but not for the man-
ner in which it is used. Next we examine these two questions
in detail using the main Visualization and Merging panels,
starting with the open question about the manner in which
students test.

How does productive testing look like?
A first step in trying to understand what testing events are
important would be to assess whether active moving of the
testing device is similar to observing a change in reading of
the testing device while connected.

Here we describe testing with the ammeter as an ex-
ample to answer this question. We can visualize this
with Tempr without needing to do any merging as mov-
ing the testing device (user.nonContactAmmeter.drag)
and the resulting change in reading of the testing device
(model.nonContactAmmeterModel.measuredCurrentChanged)
were logged actions in the CCK Simulation. It is important to
note that drag events that end in connections being formed or
broken lead to a change in reading. Thus, the two events are
related. Figure 6 shows these two actions with Tempr. The
lower graph, describing dragging, shows that HL tend to be

Figure 6. Measuring current change with an ammeter vs actively us-
ing the ammeter. Low Learners drag the ammeter less frequently than
they observe current changes, likely engaging in less explicit testing com-
pared with High Learners.

dragging the ammeter more than LL. This is highly visible as
the blue HL shading (representing the 75th percentile) extends
above the LL brown shading. On closer inspection, we also
see that the medians differ for dragging the testing instrument.
For example, in the first 20% of interaction, both HL and LL
measured current change for about 6% of the actions that took
place (top chart). Additionally, HL also dragged the ammeter
for 6% of the actions, while LL dragged the ammeter for only
4% of actions in that time period. This is a lower number
than the number of actions that they observed current change,
meaning that they observed more current changes than they
actually moved the testing instrument. This is an indication of
passive testing. It’s likely that they left the testing instrument
on the circuit as they were modifying the circuit, hence
obtaining current changes without moving the device. One
problem with this kind testing is that LL were not necessarily
actually observing the changes in the testing device.

With Tempr, we were able to visually explore these two ini-
tially seemingly equivalent manifestations of testing and un-
derstand that, in fact, they are not the same. It also gave deeper
insight into how the two groups test, allowing us to see that HL
are engaging in more explicit testing while LL are partaking
in more passive testing.

What testing instruments do different groups use?
Based on the heatmap shown above, one can conjecture that
HL students use the ammeter more than the voltmeter, while
LL do the opposite. However, this conjecture is based on
data from the last 20% of the interaction, across all testing
events. Here we would like to evaluate this, focusing on the
more significant active testing events. Our initial hypothesis
was that HL test more than LL. To evaluate this, we merge all
active movement of the three types of testing devices and plot
this combination. Because we previously saw that moving the
testing device is more important than detecting the measure-
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Figure 7. Merging all testing device manipulation events. Note that HL
and LL are nearly indistinguishable, with LL testing slightly less fre-
quently than HL.

Figure 8. The result of decomposing the different types of testing. Inter-
esting to note that HL decrease their use of voltmeter (top graph) and
increase their use of ammeter (bottom graph) over the course of the in-
teraction, showing their ability to adapt to a new environment better
than LL.

ment change, we’ll focus on these moving the testing device
actions.

The result of this is shown in Figure 7. As can be seen, HL
and LL are nearly indistinguishable. LL testing drops off at
the end of interaction, but during the rest, the median lines
are roughly equivalent. Both have quartiles that are roughly
equivalent, with LL behaving less consistently in the middle
of the interaction.

Since we did not find much difference in the previously ex-
plored level of abstraction, we can dive into each of the raw
log events that comprise that merged event. Tempr allows us to
easily try other combinations of features, such as manipulating
the different types of testing events in the PhET CCK virtual
lab: voltmeter and ammeter. If we visualize each of these with
Tempr, the result is the graphs in Figure 8.

It is interesting to compare the difference in use of the ammeter
and the voltmeter as it does appear that there are differences
in how HL and LL are testing their circuits over time. We see

is that the HL students increase the use of the ammeter over
the course of interaction (see bottom graph in Figure 8).

The intent of Tempr is to reveal patterns that can be explained
and understood. Revisiting the activity suggests a clear ex-
planation for this finding. Since this activity is focused on
resistors, the more useful testing instrument to use would be
the ammeter. This is because changes to the resistor’s resis-
tance change the current but not the voltage. Additionally, we
see that the HL use of the voltmeter actually decreased over
the course of interaction (see top graph in Figure 8). That
is, HL began using both instruments, and then favored the
ammeter over the voltmeter. We can compare this to the LL
whose use of the voltmeter only decreases very slightly from
beginning to end of interaction. From this, it appears that HL
are adapting to their environment. As mentioned, the students
completed another activity before the one we are using the
data from. This earlier activity was on understanding light
bulbs, and the more fit testing instrument to use in that activity
would have been the voltmeter. It makes sense that learners
would start with using the voltmeter, since that was beneficial
to their understanding in the first activity, but then that only the
productive students would come to realize while interacting
with the learning environment that the voltmeter would not be
as useful here and that the ammeter was the better tool. LL
instead continue to use the voltmeter, and appear to have not
adapted as well to this activity.

DISCUSSION AND CONCLUSION
We introduced a visualization tool that facilitates a novel ex-
ploratory analytic approach. It allows for the combination of
bottom-up and top-down processes when engineering features
to highlight differences in how different groups of students
learn over time. We demonstrated, through a case study with
the PhET CCK learning environment, how the tool help us
(i) hypothesize what actions correspond with productive en-
gagement, (ii) evaluate different sets of actions, (iii) compare
groups of learners on these sets, and (iv) do so in the context
of a temporal analysis.

With the aid of Tempr, we were able to use the heatmap to
raise hypotheses and pinpoint the questions we wanted to
answer regarding the instruments that students used (ammeter
vs voltmeter) and the way in which testing was done (actively
moving the device vs passively leaving the testing device
connected). After investigation of these two with Tempr, we
found that HL perform more active testing compared to LL. By
visualizing use over time we also found that HL adapt more
successfully to characteristics of the activity. This was found
using Temper’s ability to visualize combinations of raw events
at different levels of abstraction - finding minimal differences
in how students test when all testing events were merged, but
discovering richer differences once we reduced to the different
types of testing events.

We are currently using Tempr to analyze data from other com-
plex environments such as MOOCs. While technically data
from a variety of environments can be entered into Tempr,
its utility across types of learning environments needs to be
evaluated. For example, what is the dependency of Tempr
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on granularity of data? We hypothesize that Tempr is ben-
eficial especially with data with high resolution, as a main
advantage of the tool is its ability to identify and group sets
of actions. However, this hypothesis is yet to be tested. It
is also of interest to evaluate Tempr with hierarchical data.
While using search terms in the merging panel can support
the grouping of hierarchical data, presently Tempr lacks a
structural support for levels in data. Tempr also focuses solely
on ordinal information and lacks timing data. This choice
was made to simplify its data structure, as Tempr takes sim-
ple lists of events. However, this compromises the ability
to analyze by duration of events. This is relevant especially
when data includes events of widely varying duration, such as
video watching (often minutes) and problem attempts (often
seconds) in MOOCs.

We are currently working to extend Tempr’s capabilities to
further support researchers in their ability to use data to under-
stand more about how groups of learners are learning. Specif-
ically, Tempr will soon support identifying and evaluating
sequences of actions. For example, rather than merely merg-
ing actions (action A or action B), it may be of interest to
sequence actions (action A followed by action B). This will
allow researchers to use grammatical structures and reveal
more complex patterns.

Overall, Tempr is not intended to replace the expert. Instead,
it is a powerful tool to be used by experts who seek to obtain
a more detailed understanding of learning trajectories in the
target environment.
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